Diagramma di Coxeter-Dynkin

In geometria , un diagramma di Coxeter-Dynkin è un grafico che mostra un insieme relazionale di specchio (o iperpiani di riflessione ) nello spazio per una costruzione caleidoscopica .

Come un grafico stesso, il diagramma rappresenta i gruppi di Coxeter , ogni nodo del grafico rappresenta uno specchio ( sfaccettatura del dominio) e ogni ramo del grafico rappresenta l'ordine dell'angolo diedro tra due specchi (su un bordo del campo).

Inoltre, i grafici hanno anelli (cerchi) attorno ai nodi per lo specchio attivo che mostrano un politopo uniforme  (en) specifico.

Il diagramma è tratto dal diagramma Dynkin .

Descrizione

Il diagramma può anche rappresentare politopi aggiungendo anelli (cerchi) attorno ai nodi. Ogni diagramma deve avere almeno un nodo attivo per rappresentare un politopo.

Gli anelli esprimono informazioni: se un punto generatore è dentro o fuori dallo specchio. Più precisamente, uno specchio è attivo (crea riflessi) solo quando i punti sono fuori dallo specchio, quindi aggiungere un anello significa che un punto è fuori dallo specchio e crea un riflesso.

I bordi sono etichettati con un numero naturale n che rappresenta un angolo diedro di 180 / n . Se un bordo non è etichettato, si presume che sia 3 . Se n = 2, l'angolo è di 90 gradi e gli specchi non hanno interazione e il bordo può essere omesso. Due specchi paralleli possono essere contrassegnati con "∞".

In linea di principio, n specchi possono essere rappresentati da un grafico completo in cui sono disegnati tutti gli n * (n-1) / 2 . In pratica, interessanti configurazioni dello specchio includeranno un numero di angoli retti e i bordi corrispondenti possono essere omessi.

Polytopes e piastrellature possono essere generati utilizzando questi specchi e un unico punto di generazione. Le immagini speculari creano nuovi punti come i riflessi. È possibile creare bordi tra i punti e un'immagine speculare. I lati possono essere costruiti da cicli di bordi creati, ecc.

Esempi

In generale, tutti gli n-politopi regolari, rappresentati dal simbolo Schläfli {p, q, r, ...} possono avere i loro domini fondamentali rappresentati da un insieme di n specchi e sono correlati in un diagramma di Coxeter-Dynkin in una linea di nodi e bordi etichettati con p, q, r ...

Gruppi finiti di Coxeter

Le famiglie di politopi convessi uniformi sono definite dai gruppi di Coxeter .

Appunti:

non A 1+ B 4+ C 2+ D 2 p E 6-8 F 4 G 2-4
1 A 1 = []
CDW dot.svg
           
2 A 2 = [3]
CDW dot.svgCDW 3b.pngCDW dot.svg
  C 2 = [4]
CDW dot.svgCDW 4.pngCDW dot.svg
D 2 p = [p]
CDW dot.svgCDW p.svgCDW dot.svg
    G 2 = [5]
CDW dot.svgCDW 5.pngCDW dot.svg
3 A 3 = [3²]
CDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
B 3 = A 3 = [3 0,1,1 ]
CD dot.pngCD 3b.pngCD downbranch-00.png
C 3 = [4,3]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svg
      G 3 = [5,3]
CDW dot.svgCDW 5.pngCDW dot.svgCDW 3b.pngCDW dot.svg
4 A 4 = [3³]
CDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
B 4 = h [4,3,3] = [3 1,1,1 ]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.png
C 4 = [4,3²]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
  E 4 = A 4 = [3 0,2,1 ]
CD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD downbranch-00.png
F 4 = [3,4,3]
CDW dot.svgCDW 3b.pngCDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svg
G 4 = [5.3.3]
CDW dot.svgCDW 5.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
5 A 5 = [3 4 ]
CDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
B 5 = h [4,3³] = [3 2.1.1 ]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.png
C 5 = [4,3³]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
  E 5 = B 5 = [3 1,2,1 ]
CD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.png
   
6 A 6 = [3 5 ]
CDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
B 6 = h [4,3 4 ] = [3 3.1.1 ]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.png
C 6 = [4,3 4 ]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
  E 6 = [3 2,2,1 ]
CD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.png
   
7 A 7 = [3 6 ]
CDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
B 7 = h [4,3 5 ] = [3 4.1.1 ]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.png
C 7 = [4,3 5 ]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
  E 7 = [3 3,2,1 ]
CD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.png
   
8 A 8 = [3 7 ]
CDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
B 8 = h [4,3 6 ] = [3 5.1.1 ]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.png
C 8 = [4,3 6 ]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
  E 8 = [3 4,2,1 ]
CD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.png
   
9 A 9 = [3 8 ]
CDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
B 9 = h [4,3 7 ] = [3 6.1.1 ]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.png
C 9 = [4,3 7 ]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
       
10+ .. .. .. .. .. .. ..

(Nota: vengono forniti nomi alternativi come semplici gruppi di Lie  (en) .)

  1. A n forma la famiglia dei politopi simpliciali (stesso nome: A n ).
  2. B n è la famiglia dei mezzi ipercubi , a partire da n = 4 con le 24 cellule en = 5 con il penteratto (chiamato anche D n ).
  3. C n forma la famiglia degli ipercubi (stesso nome: C n ).
  4. D 2 n forma i poligoni regolari (chiamati anche I 1 n ).
  5. E 6 , E 7 , E 8 sono i generatori dei politopi Gosset semiregolari (stessi nomi: E 6 , E 7 , E 8 ).
  6. F 4 è la famiglia del policoro a 24 celle (stesso nome: F 4 ).
  7. G 3 è la famiglia del poliedro dodecaedro / icosaedro (chiamato anche H 3 ).
  8. G 4 è la famiglia del policoro da 120 cellule / 600 cellule (chiamata anche H 4 ).

Infiniti gruppi di Coxeter

Le famiglie di tassellature uniformi convesse sono definite dai gruppi di Coxeter.

Appunti:

non P 3+ Q 5+ R 3+ S 4+ T 7-9 U 5 V 3 W 2
2               W 2 = [∞]
CDW dot.svgCDW infin.pngCDW dot.svg
3 P 3 = h [6,3]
CD righttriangle-000.png
  R 3 = [4,4]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 4.pngCDW dot.svg
      V 3 = [6,3]
CDW dot.svgCDW 6.pngCDW dot.svgCDW 3b.pngCDW dot.svg
 
4 P 4 = q [4,3,4]
CD downbranch-00.pngCD downbranch-33.pngCD downbranch-00.png
  R 4 = [4.3.4]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 4.pngCDW dot.svg
S 4 = h [4,3,4]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD 4.pngCD dot.png
       
5 P 5
CD downbranch-00.pngCD downbranch-33.pngCD righttriangleopen 000.png
Q 5 = q [4,3², 4]
CD leftbranch-00.pngCD downbranch-00.pngCD 3b.pngCD dot.png
R 5 = [4,3², 4]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 4.pngCDW dot.svg
S 5 = h [4,3², 4]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 4.pngCD dot.png
  U 5 = [3,4,3,3]
CDW dot.svgCDW 3b.pngCDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svg
   
6 P 6
CD downbranch-00.pngCD downbranch-33.pngCD downbranch-open.pngCD downbranch-33.pngCD downbranch-00.png
Q 6 = q [4,3³, 4]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.png
R 6 = [4,3³, 4]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 4.pngCDW dot.svg
S 6 = h [4,3³, 4]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 4.pngCD dot.png
       
7 P 7
CD downbranch-00.pngCD downbranch-33.pngCD downbranch-open.pngCD downbranch-33.pngCD righttriangleopen 000.png
Q 7 = q [4,3 4 , 4]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.png
R 7 = [4,3 4 , 4]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 4.pngCDW dot.svg
S 7 = h [4,3 4 , 4]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 4.pngCD dot.png
T 7 = [3 2,2,2 ]
CD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD downbranch-00.pngCD downbranch-33.pngCD downbranch-open.pngCD 3b.pngCD dot.png
     
8 P 8
CD downbranch-00.pngCD downbranch-33.pngCD downbranch-open.pngCD downbranch-33.pngCD downbranch-open.pngCD downbranch-33.pngCD downbranch-00.png
Q 8 = q [4,3 5 , 4]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.png
R 8 = [4,3 5 , 4]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 4.pngCDW dot.svg
S 8 = h [4,3 5 , 4]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 4.pngCD dot.png
T 8 = [3 3,3,1 ]
CD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.png
     
9 P 9
CD downbranch-00.pngCD downbranch-33.pngCD downbranch-open.pngCD downbranch-33.pngCD downbranch-open.pngCD downbranch-33.pngCD righttriangleopen 000.png
Q 9 = q [4,3 6 , 4]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.png
R 9 = [4,3 6 , 4]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 4.pngCDW dot.svg
S 9 = h [4,3 6 , 4]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 4.pngCD dot.png
T 9 = [3 5,2,1 ]
CD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.png
     
10 P 10
CD downbranch-00.pngCD downbranch-33.pngCD downbranch-open.pngCD downbranch-33.pngCD downbranch-open.pngCD downbranch-33.pngCD downbranch-open.pngCD downbranch-33.pngCD downbranch-00.png
Q 10 = q [4,3 7 , 4]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.png
R 10 = [4,3 7 , 4]
CDW dot.svgCDW 4.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 3b.pngCDW dot.svgCDW 4.pngCDW dot.svg
S 10 = h [4,3 7 , 4]
CD dot.pngCD 3b.pngCD downbranch-00.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 3b.pngCD dot.pngCD 4.pngCD dot.png
       
11 ... ... ... ...        

(Nota: vengono forniti anche nomi alternativi come semplici gruppi di Lie.)

  1. P n è un gruppo ciclico (chiamato anche ~ A n-1 ).
  2. Q n (chiamato anche ~ D n-1 )
  3. R n forma la famiglia della tassellatura regolare dell'ipercubo {4,3, ....} (chiamato anche ~ B n-1 ).
  4. S n forma la famiglia di piastrellatura alternata ipercubica (chiamata anche ~ C n-1 ).
  5. T 7 , T 8 , T 9 sono le piastrellature Gosset (chiamate anche ~ E 6 , ~ E 7 , ~ E 7 ).
  6. U 5 è la piastrellatura regolare di 24 celle {3,4,3,3} (chiamata anche ~ F 4 ).
  7. V 3 è la piastrellatura esagonale (chiamata anche ~ H 2 ).
  8. W 2 è costituito da due specchi paralleli (chiamati anche ~ I 1 ).

Riferimenti

Vedi anche

Articoli Correlati

Link esterno

(it) [PDF] Polytopes regolari, reticoli radicali e quasicristalli , R. Bruce King