Classe di regolarità

In matematica e analisi , le classi di regolarità delle funzioni digitali costituiscono un catalogo frammentario basato sull'esistenza e sulla continuità di derivato iterato , indipendentemente dalla forma o forma della funzione ( monotonia , convessità , zeri , ecc.).

Tuttavia, le classi di regolarità non riflettono in alcun modo un tipo esaustivo di funzioni: in particolare, i criteri si riferiscono a tutto il dominio di definizione .

Dominio nella dimensione n = 1

Se J è un intervallo di ℝ e un intero, consideriamo i seguenti spazi funzionali :

Questi insiemi sono l'algebra , così ancora di più nei spazi vettoriali su ℝ.

La continuità è legata alle usuali topologie su J e su ℝ. D'altra parte, non è specificato se J è aperto , chiuso , semiaperto, mezzo destro o intero ℝ. La topologia (o forse lo standard ) associata a questi spazi non è spiegata neanche qui (vedi Spazio di Fréchet ).

Quando il contesto è chiaro, l '"argomento" ℝ viene ignorato nella notazione, e lo stesso vale a volte per il dominio della definizione (questo è di solito il caso di J = ℝ).

Poiché la derivabilità implica continuità, questi insiemi soddisfano la sequenza di inclusioni:

Vengono comunemente menzionate altre due categorie:

Soddisfano le seguenti inclusioni:

Se l'intervallo J non è banale , tutti questi insiemi costituiscono, con le loro leggi, spazi vettoriali della carta dimensionale (ℝ) .

Dominio nella dimensione n > 1

Vale a dire un limitato aperto, di confine e di adesione .

Per semplicità, supponiamo che sia un dominio "normale"; per esempio e per fissare le idee, che il teorema della divergenza è valido per qualsiasi funzione sufficientemente liscia .

In questo contesto, le definizioni precedenti mantengono la loro validità sostituendo J con e assumendo "derivato" nel senso di "  differenziale  ".

Articoli Correlati

<img src="https://fr.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">