Sottogruppo a un parametro

Un sottogruppo a un parametro di un gruppo di Lie reale G è un gruppo di Lie morfismo c  : ℝ → G . Più specificamente, c è un controllo differenziabili :

.

Proprietà

Derivando questa relazione rispetto alla variabile s e valutando per s = 0, si ottiene:

dove L c ( t ) denota la moltiplicazione a sinistra per c ( t ). Un sottogruppo di un parametro ottenuto come orbita dell'elemento neutro in un campo vettoriale invariante sinistra di G . Tale campo X è determinato dal suo valore X ( e ) nell'elemento neutro e . Esiste quindi una corrispondenza uno-a-uno tra il sottogruppo di un parametro e lo spazio tangente g da G a e  :

I sottogruppi a un parametro intervengono naturalmente nella definizione della mappa esponenziale del gruppo di Lie G  :

Esempi

Gruppo di Lie commutativo

Qualsiasi spazio vettoriale reale di dimensione finita E è un gruppo di Lie, la legge interna è l'aggiunta del vettore. Lo spazio tangente a 0 di E si identifica naturalmente con E come uno spazio vettoriale reale. I sottogruppi di un parametro E sono semplicemente applicazioni t ↦ t . v dove v gestisce E  : che sono parametrizzati linee vettoriali di E .

La classificazione dei gruppi di Lie commutativi è nota ed elementare. Qualsiasi gruppo di Lie commutativa G è realizzato come un quoziente di uno spazio vettoriale S da un sottogruppo discreto, una sottorete E . Sottogruppi un parametro G Si ottiene così facendo passare quoziente dritto parametrizzati E .

Un esempio importante è il toro ℝ n / ℤ n . I sottogruppi a un parametro sono le mappature c v  : t → t . v mod ℤ n dove v attraversa ℝ n . Compaiono comportamenti diversi:

Gruppo di rotazione

Per ogni vettore v diverso da zero di ℝ 3 , la mappa R associa a t la rotazione dell'asse orientato ℝ. v e dell'angolo t è un sottogruppo a un parametro del gruppo SO (3) delle rotazioni dello spazio euclideo.

Questi sono esattamente tutti i sottogruppi a un parametro di SO (3). È notevole notare che sono tutte applicazioni periodiche.

Come promemoria, è comune parametrizzare il gruppo SO (3) per quaternioni unitari.

I sottogruppi con un parametro di S 3 hanno come immagini le tracce dei piani vettoriali reali di H contenenti 1. Si tratta di diffeomorfismi locali di ℝ su cerchi grandi di S 3 .

Gruppo un parametro di diffeomorfismi

La definizione può essere facilmente generalizzata a gruppi di Lie di dimensione infinita. L'esempio standard è il gruppo dei diffeomorfismi di una varietà differenziale M di dimensione n . Ad esempio, è possibile introdurre la nozione di gruppo con un parametro di diffeomorfismo .

Un gruppo con un parametro di diffeomorfismi è una mappa differenziabili f  : ℝ × M → M tale che le sezioni f t sono diffeomorfismi della varietà M che soddisfano:

.

È semplicemente un'azione differenziabile su ℝ milioni .

Questa nozione deve essere confrontata con il campo vettoriale:

Si dice quindi che il campo sia globale .

Se M ha più struttura ( varietà Riemanniana , varietà simplettica o varietà di contatto per esempio), potremmo volere che le sezioni f t conservino questa struttura; in questo caso, il termine diffeomorfismo è sostituito da un vocabolario adattato.

<img src="https://fr.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">